Application of Aerospace Durability and Damage Tolerance Approaches to Wind Blade Design
Outline

Introduction

Aerospace Industry - Durability and Damage Tolerance

Durability and Damage Tolerance Analysis & Test

Wind Blade Analysis Examples

Summary and Discussion
Company Background

NSE Composites

- Engineering company specializing in the field of advanced composite structures
- Three principal engineers, three structural analysts, plus consultants
- Founded in 1996, located in Seattle, WA

Engineering Services

- Structural Design & Analysis
- Certification of Aerospace Structures
- Structural Optimization
- Finite Element Analysis
- Structural Testing
- Research & Development
- Analysis Software Development

View of Lake Union from NSE offices in Seattle
Example Customers

AEROSPACE

- Boeing
- Bombardier
- Spirit AeroSystems
- Fokker Aerostructures
- General Electric Global R&D
- Federal Aviation Administration (FAA)
- Hexcel Composites
- Bell Helicopter

WIND ENERGY

- GE Renewable Energy
- General Electric Global R&D
- General Electric Wind
- Frontier Wind (Energy Unlimited)
- Knight & Carver Wind Blade Division
- Global Energy Concepts (now DNV-GL)
- Dynamic Design
- Kenetech Windpower, Inc.
Typical Analysis Projects

Finite Element Analysis (FEA)

- Wing, fuselage, engine/rotor/wind turbine blades
- Nonlinear geometry and material modeling
 - In-plane progressive damage analysis
 - Delamination and disbond analysis under static and fatigue loading
- Buckling stability analysis
 - Eigenvalue buckling
 - Nonlinear post-buckling response

Damage Tolerance Analysis Methods

- Skin-stringer applications with large notches/damage
- Impacted sandwich structure
- Nonlinear FEA and semi-empirical methods
Bonded Joints & Fracture Mechanics

VCCT Finite Element Development

- Developed and validated Boeing’s VCCT user element (in collaboration with Boeing).
 - *Eventually implemented in ABAQUS.*

- Developed an approach for automated progressive damage under fatigue loading.
 - *Documented in ASTM Fracture Workshop presentation (2004).*

- Ongoing involvement with ABAQUS developers to support enhancements for static and fatigue VCCT analysis.
FAA Guidance Material & Safety Initiatives

CMH-17 Composite Material Handbook – 17

- NSE active in CMH-17 since 1996.
- Co-Chairs of Damage Tolerance Working Group
- Primary authors of many sections in Volume 3, Chapter 12: “Damage Resistance, Durability, and Damage Tolerance”.

CSET – Composite Structural Engineering Technology Course

- Contracted by the FAA to author sections of an FAA-developed course covering structural substantiation, damage tolerance, and certification.
- Course content expands on certification guidance in AC 20-107B: “Composite Aircraft Structure” is the primary source of advisory information for composite aircraft structure (released in 2009).
Outline

Introduction

Aerospace Industry - Durability and Damage Tolerance

Durability and Damage Tolerance Analysis & Test

Wind Blade Analysis Examples

Summary and Discussion
Safe Life vs. Durability & Damage Tolerance

- **Safe Life** - Adequate fatigue life of a structural member is ensured by limiting its allowed operational life.

- **Durability** - The structure retains adequate properties throughout its life, such that any deterioration can be found and repaired.

- **Damage Tolerance** - The structure retains the required strength for a period of time after sustaining damage.
Durability & Aging Considerations

Service Life Limits

- The service life limits of composite aircraft components are *not* generally driven by fatigue and aging (i.e., durability).
- Material property degradation due to fatigue loading and environmental exposure is avoided through design and material screening based on testing and service history.

Aerospace Industry Best Practices

- Use **traditional designs and materials** (with service history).
- Perform **material screening** (test at expected temperature/moistures/fluid exposure).
- Keep design **strains below fatigue thresholds** (no damage growth allowed).
- Take caution with fatigue susceptible designs (see next slide).
- Pay **special attention to bonded joints and sandwich structure** (limit use of bonded joints in primary load paths, use arrestment features to stop disbonds).
- Use robust finishes to protect from moisture and UV (inspect and repair in-service).
Sensitive details typically evaluated by test and analysis at mid-level of building block.

[1] Figure courtesy of Christos Kassapoglou
Design Criteria for Damage and Defects

Damage Threat Assessment

- Define damage/defect types, locations, and severity levels that may occur in the structure during manufacturing and service.
- Consider allowable manufacturing defects as well as possible “escapements” (process failures missed by QC during manufacturing).

Damage-Related Criteria

- Define a set of criteria that are representative and conservative for the full list of expected damage/defect types and locations, that can be substantiated with analysis and test.
 - Use simplified damage states.
- Criteria are grouped into Categories of Damage and Defects [1].
 - Defined load levels.
 - Probability of detection is associated with production and in-service inspection methods.

Load Levels for Categories of Damage \[1\]

Match design load levels with visibility and likelihood of detection.

- **Ultimate**
 - 1.5 Factor of Safety
 - For non-detectable and acceptable damage

- **Limit**
 - ~ Maximum load per lifetime
 - For detectable damage to be found and repaired through maintenance
 - Continued safe flight

- **Allowable Damage Limit (ADL)**
 - For damage occurring with flight crew’s knowledge

- **Critical Damage Threshold (CDT)**

Increasing Damage Severity

Is there an equivalent to Ultimate and Limit load levels in the wind industry?

[1] Figures from CSET – Composite Structural Engineering Technology Course
Damage & Defects - Category 1 [1]

Definition

- Likely damage or defects that are either not detectable or are deemed acceptable during manufacturing inspections and service inspections.

Load Requirements

- Must withstand **Ultimate Load** and not impair safe operation of the aircraft for its lifetime.

[1] Figures from CSET – Composite Structural Engineering Technology Course
Category 1 damages and defects

- Barely visible impact damage (BVID)
- Small holes, scratches, cracks, gouges
- Minor environmental damage including erosion
- Allowable manufacturing defects
 - Bondline flaws and voids
 - Porosity
 - Waviness

[1] Figures from CSET – Composite Structural Engineering Technology Course
Strength Allowables

- Strength allowables take into account possible damages and defects.
 - Simplified damage states used to cover for impact damage variability.
 - Analysis is calibrated/validated with testing with the same damage and defects.

- ½” by ½” delamination assumed for analysis at critical location in radius or stiffener terminations.

- ¼” by infinite disbond assumed along stiffener flange-to-skin bondline.
Damage & Defects - Category 2 [1]

Definition

- Damage that is detectable during maintenance inspections at specified intervals and is deemed unacceptable (repair scenario).

Load & Life Requirements

- Must withstand a once per lifetime load (i.e., Limit load), which is applied following repeated service loads occurring during the applicable inspection interval.

Category 2 damages and defects

- Visible impact damage (VID)
- Deep gouges, larger holes, dents
- Manufacturing defects/escapements
- Major local heat or environmental degradation

[1] Figures from CSET – Composite Structural Engineering Technology Course
Definition

- Obvious damage that will be reliably detected within a few flights of occurrence by operations or ramp maintenance personnel during routine activities (repair scenario).

Load Requirements

- Must withstand **Limit or near-Limit Load**.
- Required load levels generally decrease with increasing damage severity (and increasing detectability).
- Must maintain load capability **for a “few” flights** (damage is readily detectible during pre-flight walk around).

[1] Figures from CSET – Composite Structural Engineering Technology Course
Category 3 Damages & Defects – Examples [1]

Category 3 damages include:

- Holes punched by unknown objects
- Large gouges, dents
- Multiple dents or holes
- Areas of heat scorching
- Lost repair patch

[1] Figures from CSET – Composite Structural Engineering Technology Course
Category 2 & 3 Damage & Defects – Analysis Examples

Large Notch Damage Tolerance

- Skin crack with a severed stringer simulates in-service damage.
 - *Simplified damage state covers for a wide range of possible in-service damage scenarios.*

- Analysis predicts through-thickness skin crack growth and skin/stringer delamination.
 - *Ranges from closed-form methods to progressive damage FEA.*
 - *Validation is done with large-scale tests of multi-stringer panels.*

Fuselage Skin-Stringer Panel with Notch

[Diagram of fuselage skin-stringer panel with notch]
Skin Buckling with Defects

- Disbonded stringer simulates in-service damage or a manufacturing escapement.
- Disbond length is typically set at arrestment features (frames).
- Limit Load level used for margin of safety calculations.
Outline

Introduction

Aerospace Industry - Durability and Damage Tolerance

Durability and Damage Tolerance Analysis & Test

Wind Blade Analysis Examples

Summary and Discussion
Building Block Approach \[1\]

Testing for Damage Tolerance

- The **mid-level building block tests** (elements and subcomponents) are used to evaluate damage and defects (static and “no growth” fatigue testing).

- Testing must include realistic boundary conditions and allow for load redistribution (not possible at coupon level). Test articles must be representative of production structure.

Delamination & Disbond Analysis

Fracture Mechanics Approach

- Use of fracture mechanics has become common practice in the aerospace industry to characterize the onset and growth of delaminations and disbonds.
- The virtual crack closure technique (VCCT) is widely used for computing energy release rates based on results from finite element (FE) analyses.
- Closed-form methods exist for some configurations, where the near crack tip loading is well-understood.

Crack Path Discretized with Interface Elements
Fracture Failure Predictions

Modes of Fracture

- Mode I (opening)
- Mode II (sliding)
- Mode III (tearing)

Example Mixed-Mode Failure Criterion \[f = \frac{G_T}{G_{Ic} + \left(\left(G_{IIc} - G_{Ic} \right) \frac{G_{II}}{G_T} + \left(G_{IIIc} - G_{Ic} \right) \frac{G_{III}}{G_T} \right) \left(\frac{G_{II} + G_{III}}{G_T} \right)^{\eta^{-1}}} \]

failure is predicted when \(f > 1.0 \).

Fracture Toughness Testing (Mode I)

ASTM D5528-13 – Double Cantilever Beam (DCB) Test

- The ASTM standard is for static testing.
- Includes options for toughness values.

Crack Growth Data (Fatigue)

- Modified DCB test standard used for fatigue.
- Crack growth rate data (da/dN vs. G) is determined from a single test in which G decreases as the crack length increases
 - Provides a range of growth rates as the crack grows.
Outline

Introduction

Aerospace Industry - Durability and Damage Tolerance

Durability and Damage Tolerance Analysis & Test

Wind Blade Analysis Examples

Summary and Discussion
Wind Blade Design - Partial Safety Factors

Material Partial Safety Factors (MPSFs)

- MPSFs are utilized in wind blade designs to take into account the following:
 - Material properties variation between as-built blades and test coupons
 - Manufacturing tolerance and defects within drawing limit
 - Environmental effect and degradation
 - Other uncertainties of blade structural margin not captured by blade analysis and testing

Certification Guidelines

- MPSFs defined in commonly used certification guidelines were mostly established based on empirical experience.
 - e.g., GL2010, DNV-DS-J102, DNVGL-ST-0376

<table>
<thead>
<tr>
<th>MPSFs for BONDLINES per GL2010</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General material partial factor</td>
<td>1.35</td>
</tr>
<tr>
<td>Influence of aging</td>
<td>1.50</td>
</tr>
<tr>
<td>Temperature effect</td>
<td>1.00</td>
</tr>
<tr>
<td>Bonding surface reproducibility</td>
<td>1.10</td>
</tr>
<tr>
<td>Post-cured/Non-post-cured bond</td>
<td>1.00/1.10</td>
</tr>
</tbody>
</table>
Evolving Wind Blade Certification Guidelines

- More recent certification guidelines such as DNVGL-ST-0376, IEC61400-5 (not released yet) encourage building-block approach
 - Sub-component/sub-scale/full-scale testing, and advanced analysis methods by allowing lower MPSFs.

Possible Approach Similar to Aerospace?

- Is “Ultimate” vs. “Limit” load equivalent to “all” vs. “some” of the partial safety factors?
- Would evaluation of structure with defined damage result in a more robust design than the full partial safety factor approach?
Analysis Example – Buckling

Buckling Stability Analysis [1]

- Sensitivity to facesheet disbond (due to manufacturing defect or in service damage) can be evaluated using an FE model with an assumed flaw.
- Facesheet buckling and delamination growth is investigated with FE-based stability analysis and fracture mechanics.

Disbond can be simulated in critical region with a flaw assumed between facesheet and core.

Adhesive Bondline Strength & Fatigue Life

Sensitivity to disbonds (static and fatigue) can be evaluated with assumed flaws and FE-based fracture mechanics.

Overall Reliability Considerations

Structural Reliability is Affected by Combination of:

- **Design criteria** including assumed damage and defect sizes.
- **Material strength and fatigue properties** including statistical and environmental knockdowns.

Damage Tolerance Considerations

- The combination of assumed damage and defects may be **overly conservative** if used in combination with existing design approaches and safety factors.
- **For example**, if a worst-case flaw in a bondline is assumed at the critical location, the use of a statistical knockdown on material properties may not be needed to achieve a reliable design.
Outline

Introduction

Aerospace Industry - Durability and Damage Tolerance

Durability and Damage Tolerance Analysis & Test

Wind Blade Analysis Examples

Summary and Discussion
Summary

The aerospace industry typically uses a **damage tolerance approach** for composite structures to achieve reliable designs.

- The damage and defect sizes are categorized and are associated with varying load requirements (larger damage = lower loads).
- Damage states are often simplified to cover for a range of scenarios.

Durability and aging issues are addressed by design and material screening.
- Careful attention paid to bonded joints and fatigue sensitive details.

Analysis is performed with **assumed damage and defects**.
- Fracture mechanics analysis is commonly used to evaluate interlaminar and adhesive bondline failures starting with an assumed damage or defect.

Building block testing is used to evaluate sensitive design details and validate analysis.
Conclusions

- Wind blade design may benefit from using a damage tolerance approach.
 - Evaluation of discrete damage and defect scenarios may lead to an improved understanding of blade reliability.

- Overall reliability should be considered when developing damage and defect criteria.
 - Using a damage tolerance approach with the existing design knockdowns (e.g., partial safety factors) may be overly conservative.

- Evolving certification guidelines for wind blades may provide the flexibility needed to use a similar approach as used for aerospace composites.